Newer Therapies In Management of Neonatal Birth Asphyxia
DOI:
https://doi.org/10.46858/vimshsj.8110Keywords:
Birth asphyxia, Neonatal Hypoxia, Neonatal encephalopathy, Therapeutic hypothermiaAbstract
Asphyxia is an insult to the fetus or newborn due to lack of oxygen or lack of perfusion to various organs.1 National Neonatology Forum of India has defined asphyxia as gasping or ineffective breathing or lack of breathing at 1 min of life.2
Birth asphyxia is one of the most important causes of neonatal brain injury whose incidence ranges from 3.7 to 9/1000 deliveries in the west.3 With the advent of therapeutic hypothermia (TH), improved outcomes are being reported in moderate HIE. TH, however, has not demonstrated improvement in outcomes related to severe HIE. . This has led clinicians and researchers to continue evaluating complementary and/or alternative therapies for infants with HIE. In this review, we will discuss current and emerging therapies in the management of HIE, other than hypothermia. With issues of access to health care and the burden of birth asphyxia shifting to developing and least developed nations, there is a need for alternative and supplementary neuroprotective agents. Low cost and easy availability along with ease of use would assist in ensuring that these therapies have global applicability. So global efforts must be taken to increase such studies as birth asphyxia is causing more morbidity & mortality globally.
Downloads
References
Leviton A, Nelson KB. Problems with definitions and classifications of newborn encephalopathy. Pediatr Neurol 1992;8:85-90.
Snyder EY, Cloherty JP. Perinatal asphyxia. In: Cloherty JP, Stark AR, editors. Manual of Neonatal Care. 4th ed. Philadelphia: Lippincott-Williams & Wilkins; 1998. p. 515-32.
Mcintosh N. Hypoxic ischaemic encephalopathy (HIE). In Forfar and Arneil's Textbook of Paediatrics. New York: Churchill Living Stone; 1998. p. 126.
Leviton A, Nelson KB. Problems with definitions and classifications of newborn encephalopathy. Pediatr Neurol 1992;8:85-90.
Casey BM, McIntire DD, Leveno KJ. The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med 2001;344:467-71.
Murray CJL, Lopez AD. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability Form Diseases, Injuries and Risk Factors in 1990 and Projected to 2020. Cambridge: Harvard University Press; 1996. p. 429-53.
Lawn JE, Manandhar A, Haws RA, Darmstadt GL. Reducing one million child deaths from birth asphyxia – A survey of health systems gaps and priorities. Health Res PolicySyst 2007;5:4.
World Health Organization. World Health Report. Geneva: WHO; 2005.
National Neonatal and Perinatal Database Report. 2002-2003:1-58.
Lopez AD, Methers CD, Ezzati M, Jamison DT, Murray CJL. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet 2006;367:1747-57.
Committing to Child Survival: A Promise Renewed; 2013.
Lopez AD, Mathers CD. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann Trop Med Parasitol 2006;100:481-99.
Saugstad O.D. Reducing global neonatal mortality is possible. Neonatology. 2011;99:250–257. doi: 10.1159/000320332.
Wyckoff M.H., Aziz K., Escobedo M.B., Kapadia V.S., Kattwinkel J., Perlman J.M., Simon W.M., Weiner G.M., Zaichkin J.G. Part 13: Neonatal resuscitation: 2015 american heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(Suppl. 2):S543–S560. doi: 10.1161/CIR.0000000000000267.
Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F., Fanaroff A.A., Poole W.K., Wright L.L., Higgins R.D., et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005;353:1574–1584. doi: 10.1056/NEJMcps050929.
Thoresen M., Tooley J., Liu X., Jary S., Fleming P., Luyt K., Jain A., Cairns P., Harding D., Sabir H. Time is brain: Starting therapeutic hypothermia within three hours after birth improves motor outcome in asphyxiated newborns. Neonatology. 2013;104:228–233. doi: 10.1159/000353948.
Committee on Fetus and Newborn. Papile L.A., Baley J.E., Benitz W., Cummings J., Carlo W.A., Eichenwald E., Kumar P., Polin R.A., Tan R.C., et al. Hypothermia and neonatal encephalopathy. Pediatrics. 2014;133:1146–1150.
Robertson C.M., Perlman M. Follow-up of the term infant after hypoxic-ischemic encephalopathy. Paediatr. Child Health. 2006;11:278–282.
Katheria A.C., Lakshminrusimha S., Rabe H., McAdams R., Mercer J.S. Placental transfusion: A review. J. Perinatol. 2017;37:105–111. doi: 10.1038/jp.2016.151.
Andersson O., Hellstrom-Westas L., Andersson D., Domellof M. Effect of delayed versus early umbilical cord clamping on neonatal outcomes and iron status at 4 months: A randomised controlled trial. BMJ. 2011;343:d7157. doi: 10.1136/bmj.d7157.
Georgieff M.K. Nutrition and the developing brain: Nutrient priorities and measurement. Am. J. Clin. Nutr. 2007;85:614S–620S.
Spoljaric A., Seja P., Spoljaric I., Virtanen M.A., Lindfors J., Uvarov P., Summanen M., Crow A.K., Hsueh B., Puskarjov M., et al. Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth. Proc. Natl. Acad. Sci. USA. 2017;114:E10819–E10828. doi: 10.1073/pnas.1717337114.
Wu Y.W., Gonzalez F.F. Erythropoietin: A novel therapy for hypoxic-ischaemic encephalopathy? Dev. Med. Child. Neurol. 2015;57(Suppl. 3):34–39. doi: 10.1111/dmcn.12730.
Sugawa M., Sakurai Y., Ishikawa-Ieda Y., Suzuki H., Asou H. Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci. Res. 2002;44:391–403. doi: 10.1016/S0168-0102(02)00161-X.
Nagai A., Nakagawa E., Choi H.B., Hatori K., Kobayashi S., Kim S.U. Erythropoietin and erythropoietin receptors in human cns neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J. Neuropathol. Exp. Neurol. 2001;60:386–392. doi: 10.1093/jnen/60.4.386.
Maiese K., Chong Z.Z., Hou J., Shang Y.C. Erythropoietin and oxidative stress. Curr. Neurovasc. Res. 2008;5:125–142. doi: 10.2174/156720208784310231.
Wu Y.W., Mathur A.M., Chang T., McKinstry R.C., Mulkey S.B., Mayock D.E., Van Meurs K.P., Rogers E.E., Gonzalez F.F., Comstock B.A., et al. High-dose erythropoietin and hypothermia for hypoxic-ischemic encephalopathy: A phase ii trial. Pediatrics. 2016;137:e20160190. doi: 10.1542/peds.2016-0191.
Mitsialis S.A., Kourembanas S. Stem cell-based therapies for the newborn lung and brain: Possibilities and challenges. Semin. Perinatol. 2016;40:138–151. doi: 10.1053/j.semperi.2015.12.002.
Heusch G., Botker H.E., Przyklenk K., Redington A., Yellon D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 2015;65:177–195. doi: 10.1016/j.jacc.2014.10.031.
Fernandez-Lopez D., Martinez-Orgado J., Nunez E., Romero J., Lorenzo P., Moro M.A., Lizasoain I. Characterization of the neuroprotective effect of the cannabinoid agonist win-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats. Pediatr. Res. 2006;60:169–173. doi: 10.1203/01.pdr.0000228839.00122.6c.
Pandi-Perumal S.R., BaHammam A.S., Brown G.M., Spence D.W., Bharti V.K., Kaur C., Hardeland R., Cardinali D.P. Melatonin antioxidative defense: Therapeutical implications for aging and neurodegenerative processes. Neurotox. Res. 2013;23:267–300. doi: 10.1007/s12640-012-9337-4.
Ramirez M.R., Muraro F., Zylbersztejn D.S., Abel C.R., Arteni N.S., Lavinsky D., Netto C.A., Trindade V.M. Neonatal hypoxia-ischemia reduces ganglioside, phospholipid and cholesterol contents in the rat hippocampus. Neurosci. Res. 2003;46:339–347. doi: 10.1016/S0168-0102(03)00100-7.
Faulkner S., Bainbridge A., Kato T., Chandrasekaran M., Kapetanakis A.B., Hristova M., Liu M., Evans S., De Vita E., Kelen D., et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann. Neurol. 2011;70:133–150. doi: 10.1002/ana.22387.
Broad K.D., Fierens I., Fleiss B., Rocha-Ferreira E., Ezzati M., Hassell J., Alonso-Alconada D., Bainbridge A., Kawano G., Ma D., et al. Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol. Dis. 2016;87:29–38. doi: 10.1016/j.nbd.2015.12.001.
Rodriguez-Fanjul J., Duran Fernandez-Feijoo C., Lopez-Abad M., Lopez Ramos M.G., Balada Caballe R., Alcantara-Horillo S., Camprubi Camprubi M. Neuroprotection with hypothermia and allopurinol in an animal model of hypoxic-ischemic injury: Is it a gender question? PLoS ONE. 2017;12:e0184643. doi: 10.1371/journal.pone.0184643.
Ilves P., Kiisk M., Soopold T., Talvik T. Serum total magnesium and ionized calcium concentrations in asphyxiated term newborn infants with hypoxic-ischaemic encephalopathy. Acta Paediatr. 2000;89:680–685. doi: 10.1111/j.1651-2227.2000.tb00364.x.
Filippi L., Poggi C., la Marca G., Furlanetto S., Fiorini P., Cavallaro G., Plantulli A., Donzelli G., Guerrini R. Oral topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia: A safety study. J. Pediatr. 2010;157:361–366. doi: 10.1016/j.jpeds.2010.04.019.
Barks J.L.Y., Silverstein F. Repurposing Azithromycin for Neonatal Neuroprotection: Next Steps. PAS; Toronto, ON, Canada: 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dr. Abhijit Shinde, Prof. Dr. Sunil Natha Mhaske, Dr. Sushrut Kumar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.